Adsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran

نویسندگان

  • Kavoos Dindarloo Department of Environmental Health Engineering, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
  • Mohsen Heidari Department of Environmental Health Engineering, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
  • Vali Alipour Department of Environmental Health Engineering, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
  • Zeynab Akbarlou Student Research Committee, Department of Environmental Health Engineering School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
چکیده مقاله:

Background: Considering the severe health and environmental hazards caused by the entry of diazinon toxin into water resources, its removal is very important. Given the high costs of imported adsorbents, this research attempted to evaluate, for the first time, the efficiency of Iranian activated carbon in removing diazinon from aqueous solutions. Methods: In this batch experimental study, the effects of contact time (5-90 minutes), adsorbent concentration (0.5-30 g/L), initial concentration of diazinon (5-50 mg/L), and pH (3-10) on the adsorption of diazinon onto the activated carbon were evaluated. Concentrations of diazinon were measured using a high pressure liquid chromatography (HPLC) instrument. The specific surface area of the adsorbent was determined by BET and BJH methods. The experimental adsorption data was analyzed using Langmuir and Freundlich isotherm models. Pseudo first-order and pseudo second-order kinetics models were employed to determine kinetics. Moreover, data was analyzed using SPSS version 19, and Pearson correlation and analysis of variance (ANOVA) tests were performed at a significance level of 0.05. Results: The optimum contact time, sorbent dose, and pH were 30 minutes, 10 g/L, and 5, respectively. The adsorbent could adsorb diazinon with a removal efficiency of 92.5% under optimum conditions (initial concentration: 20 mg/L). The experimental data was better described by the pseudo-second order kinetic and Langmuir isotherm. A maximum adsorption capacity of 71.4 mg/g was calculated by the Langmuir isotherm model. Conclusion: With respect to the high adsorption capacity of Iranian activated carbon, this sorbent can be considered an efficient adsorbent for the removal of diazinon from aqueous solutions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum ads...

متن کامل

Removal of Reactive Black 5 dye from Aqueous Solutions by Adsorption onto Activated Carbon of Grape Seed

Background and purpose: The control of environmental pollution especially the pollution of water resources is one of the main challenges of researchers throughout the world. So, this study aimed to investigate the efficiency of reactive black 5 dye removal from aqueous solutions by adsorption onto activated carbon of grape seed. Materials and Methods: At first, the grape seed adsorbents were p...

متن کامل

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus

The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of  Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...

متن کامل

Investigation of effective parameters on adsorption of amoxicillin from aqueous medium onto activated carbon

In this study, the adsorption of amoxicillin onto activated carbon was investigated. The effect of particle size and the effluent flow rate was discussed as well as the kinetics and isotherm of adsorption equilibrium. The isotherm equilibrium studies showed that the Langmuir model was appropriate for describing the adsorption equilibrium of amoxicillin onto the activated carbon. Furthermore, th...

متن کامل

Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the pre...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره None

صفحات  93- 99

تاریخ انتشار 2017-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023